Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
1.
Molecules ; 29(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611850

RESUMO

The traditional Chinese medicine toad venom (Venenum bufonis) has been extensively used to treat various diseases, including cancers, in China and other Southeast Asian countries. The major constituents of toad venom, e.g., bufadienolides and alkaloids, exhibit broad-spectrum pharmacological effects in cancers. Herein, two new bufadienolides (1 and 2), along with eleven known compounds (3-13) were successfully isolated from Bufo melanostictus Schneider. Their structures were elucidated by extensive spectroscopic data and X-ray diffraction analysis. Furthermore, four lactam derivatives were synthesized through the transformation of bufadienolides lactones. The inhibitory effects of these compounds against human prostate cancer cell lines PC-3 and DU145 were evaluated. The outcomes indicated a notable trend, with a substantial subset displaying nanomolar range IC50 values against PC-3 and DU145 cells, underscoring their pronounced cytotoxicity. Moreover, a noteworthy distinction surfaces, wherein lactones consistently outperformed their lactam counterparts, further validating their heightened potency for the treatment of prostate cancer. This study contributes significant preclinical evidence substantiating the therapeutic viability of bufadienolides and toad venom as intervention strategies for prostate cancer.


Assuntos
Venenos de Anfíbios , Antineoplásicos , Bufanolídeos , Neoplasias da Próstata , Humanos , Masculino , Animais , Neoplasias da Próstata/tratamento farmacológico , Antineoplásicos/farmacologia , Venenos de Anfíbios/farmacologia , Bufanolídeos/farmacologia , Bufonidae , Lactamas , Lactonas
2.
Integr Cancer Ther ; 23: 15347354241237234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469799

RESUMO

OBJECTIVE: The purpose of this overview is to assess systematic reviews (SRs)/ meta-analyses (MAs) of Huachansu (HCS) combination chemotherapy for treating non-small cell lung cancer (NSCLC) and provide summarized evidence for clinical decision making. METHODS: From the creation of the database to JUNE 2023, 8 databases in English and Chinese were searched. SRs/MAs that met the inclusion and exclusion criteria were included. Two reviewers independently screened research, extracted data and assessed methodological quality, risk of bias, report quality and evidence quality by using relevant criteria from AMSTAR-2, ROBIS scale, PRISMA, and GRADE system. RESULTS: The short-term effect, long-term effect, quality of life improvement, safety and pain relief effect in 8 included SRs/MAs were assessed in this overview according to quantitative synthesis. Results assessed by AMSTAR-2, PRISMA, and ROBIS were generally unsatisfactory, with the results of the AMSTAR-2 assessment showing that all of them were of low or critically low quality; the number of items in the included research that were fully reported (compliance was 100%) by the PRISMA checklist was only 50%, while there were 38.10% of the research reporting less than 60% completeness; the ROBIS assessment showed a small number of systems to be low risk of bias. In addition, 26 items were rated as moderate quality, while 50.94% of items were rated as low or critically low quality by GRADE. CONCLUSION: HCS may be a promising adjuvant therapy for NSCLC. However, high-quality SRs/MAs and randomized control trials (RCTs) should be conducted to provide sufficient evidence so as to draw a definitive conclusion.


Assuntos
Venenos de Anfíbios , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Terapia Combinada , Neoplasias Pulmonares/tratamento farmacológico , Revisões Sistemáticas como Assunto , Metanálise como Assunto
3.
Toxicon ; 240: 107641, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331108

RESUMO

Lung cancer is a significant contributor to cancer morbidity and mortality globally. Arenobufagin, a compound derived from Bufo viridis toad venom, has demonstrated the ability to inhibit cell growth in various cancer cell lines. However, our understanding of the role and mechanism of arenobufagin in lung cancer remains incomplete, necessitating further researches to fully elucidate its action mechanism. In this study, we further explored the impact of arenobufagin on A549 cells. The results revealed that it exerted a potent cytotoxic effect on A549 cells by inhibiting cell colony formation, promoting cell apoptosis, increasing reactive oxygen species (ROS) levels, and arresting A549 cells in G2/M phase. Collectively, our findings suggested that arenobufagin may have potential as a future therapeutic for lung cancer treatment.


Assuntos
Venenos de Anfíbios , Bufanolídeos , Neoplasias Pulmonares , Humanos , Células A549 , Venenos de Anfíbios/farmacologia , Apoptose , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias Pulmonares/tratamento farmacológico , Proliferação de Células , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Pontos de Checagem do Ciclo Celular
4.
J Org Chem ; 89(6): 4128-4133, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38407917

RESUMO

Histrionicotoxin (HTX) alkaloids, which are isolated from Colombian poison dart frogs, are analgesic neurotoxins that modulate nicotinic acetylcholine receptors (nAChRs) as antagonists. Perhydrohistrionicotoxin (pHTX) is the potent synthetic analogue of HTX and possesses a 1-azaspiro[5.5]undecane skeleton common to the HTX family. Here, we show for the first time the divergent nine-step synthesis of pHTX and its three stereoisomers from the known aldehyde through a one-step construction of the 1-azaspiro[5.5]undecane framework from a linear amino ynone substrate. Surprisingly, some pHTX diastereomers exhibited antagonistic activities on the chicken α4ß2-neuronal nAChRs that were more potent than pHTX.


Assuntos
Venenos de Anfíbios , Galinhas , Receptores Nicotínicos , Animais , Alcanos
5.
J Ethnopharmacol ; 326: 117872, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38325667

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Huachansu (HCS) is a traditional Chinese medicine obtained from the dried skin glands of Bufo gargarizans and clinical uses of HCS have been approved in China to treat malignant tumors. The traditional Chinese medicine theory states that HCS relieves patients with cancer by promoting blood circulation to remove blood stasis. Clinical observation found that local injection of HCS given to pancreatic cancer patients can significantly inhibit tumor progression and assist in enhancing the efficacy of chemotherapy. However, the material basis and underlying mechanism have not yet been elucidated. AIM OF THE STUDY: To investigate the therapeutic potential of HCS for the treatment of pancreatic cancer in in situ transplanted tumor nude mouse model. Furthermore, this study sought to elucidate the molecular mechanisms underlying its efficacy and assess the impact of HCS on the microenvironment of pancreatic cancer. To identify the antitumor effect of HCS in in situ transplanted tumor nude mouse model and determine the Chemopreventive mechanism of HCS on tumor microenvironment (TME). METHODS: Using the orthotopic transplantation nude mouse model with fluorescently labeled pancreatic cancer cell lines SW1990 and pancreatic stellate cells (PSCs), we examined the effect of HCS on the pancreatic ductal adenocarcinoma (PDAC) microenvironment based on the transforming growth factor ß (TGF-ß)/Smad pathway. The expression of TGF-ß, smad2, smad3, smad4, collagen type-1 genes and proteins in nude mouse model were detected by qRT-PCR and Western blot. RESULTS: HCS significantly reduced tumor growth rate, increased the survival rate, and ameliorated the histopathological changes in the pancreas. It was found that HCS concentration-dependently reduced the expression of TGF-ß1 and collagen type-1 genes and proteins, decreased the expression of Smad2 and Smad3 genes, and downregulated the phosphorylation level of Smad2/3. Additionally, the gene and protein expression of Smad4 were promoted by HCS. Further, the promoting effect gradually enhanced with the rise of HCS concentration. CONCLUSIONS: The results demonstrated HCS could regulate the activity of the TGF-ß/Smad pathway in PDAC, improved the microenvironment of PDAC and delayed tumor progression. This study not only indicated that the protective mechanism of HCS on PDAC might be attributed partly to the inhibition of cytokine production and the TGF-ß/Smad pathway, but also provided evidence for HCS as a potential medicine for PDAC treatment.


Assuntos
Venenos de Anfíbios , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Fator de Crescimento Transformador beta/metabolismo , Camundongos Nus , Neoplasias Pancreáticas/genética , Fator de Crescimento Transformador beta1/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Colágeno , Microambiente Tumoral
6.
Chin J Integr Med ; 30(4): 366-378, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38212503

RESUMO

Chinese medicine cinobufacini is an extract from the dried skin of Bufo bufo gargarizans Cantor, with active ingredients of bufadienolides and indole alkaloids. With further research and clinical applications, it is found that cinobufacini alone or in combination with other therapeutic methods can play an anti-tumor role by controlling proliferation of tumor cells, promoting apoptosis, inhibiting formation of tumor neovascularization, reversing multidrug resistance, and regulating immune response; it also has the functions of relieving cancer pain and regulating immune function. In this paper, the chemical composition, pharmacological effects, clinical applications, and adverse reactions of cinobufacini are summarized. However, the extraction of monomer components of cinobufacini, the relationship between different mechanisms, and the causes of adverse reactions need to be further studied. Also, high-quality clinical studies should be conducted.


Assuntos
Venenos de Anfíbios , Bufanolídeos , Neoplasias , Animais , Humanos , Neoplasias/tratamento farmacológico , Bufonidae , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/uso terapêutico , Venenos de Anfíbios/química , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico
7.
Phytomedicine ; 123: 155169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992493

RESUMO

BACKGROUND: Huachansu (HCS), a known Chinese patent drug extracted from the Chinese toad skin, is frequently used for the treatment of various advanced cancers, especially gastric cancer, due to the good therapeutic effect. However, it is rather difficult to clarify the active substances and molecular mechanisms involved owing to the lack of appropriate research strategies. We recently proposed the concept and research ideas of compound-composed Chinese medicine formula. PURPOSE: To discover compound-composed Chinese medicine from Huachansu and to explore its mechanism of action in inducing apoptosis of gastric cancer cells. METHOD: Network pharmacology combined with serum pharmacochemistry was utilized to screen the predominant active constituents from HCS against gastric cancer. Then, the compound-composed Chinese medicine of HCS (CCMH) was prepared according to their relative contents in serum. The pharmacological effects and potential mechanisms for CCMH were investigated by assays for cell viability, cell cycle, apoptosis, mitochondrial membrane potential (MMP), proteomics, reactive oxygen species (ROS), N-Acetylcysteine (NAC) antagonism, proteasome activity, and western blot. RESULTS: CCMH was comprised of arenobufagin (11.14%), bufalin (18.67%), bufotalin (7.33%), cinobufagin (16.67%), cinobufotalin (16.74%), gamabufotalin (8.45%), resibufogenin (12.03%), and telocinobufagin (8.97%). CCMH evidently induced proliferation inhibition, cell cycle arrest, apoptosis, and MMP collapse in gastric cancer cells, possessing the better activities than HCS. Proteomic analysis showed that CCMH influenced ROS pathway, ubiquitin proteasome system, and PI3K/Akt and MAPK signaling pathways. CCMH markedly enhanced intracellular ROS levels in gastric cancer cells, which was reversed by NAC. Accordingly, NAC antagonized the apoptosis-inducing effect of CCMH. Significantly decreased proteasome 20S activity by CCMH was observed in gastric cancer cells. CCMH also regulated the expression of key proteins in PI3K/Akt and MAPK signaling pathways. CONCLUSION: CCMH possesses more significant apoptotic induction effects on gastric cancer cells than HCS, which is achieved primarily through suppression of proteasome activities and increase of ROS levels, followed by regulating PI3K/Akt and MAPK signaling pathways. Network pharmacology combined with serum pharmacochemistry is an effective strategy for discovering compound-composed Chinese medicine from traditional Chinese medicine, which can help clarify the pharmacological substances and mechanisms of action for traditional Chinese medicine.


Assuntos
Venenos de Anfíbios , Neoplasias Gástricas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medicina Tradicional Chinesa , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Linhagem Celular Tumoral , Apoptose
8.
J Pharm Biomed Anal ; 239: 115901, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38091819

RESUMO

Toad venom is a traditional Chinese medicine (TCM) with various sources and wide-ranging preparations. Previous quality assessment studies primarily concentrated on small molecular compounds like toad dienolactones and indole alkaloids, studies on macromolecular peptides and proteins as quality assessment standards remained at the qualitative stage, lacking the development of practical and convenient quantitative methods. In this study, to explore the peptides from toad venom as a new method for identifying and evaluating its source, a complete scan of the water extract of peptides from toad venom was conducted using HPLC-Quadrupole Time-of-Flight Mass Spectrometer (Q-TOF) 5600, leading to the identification of peptides based on mass spectrometry data. Subsequently, HPLC- Quadrupole-Linear Ion Trap Mass Spectrometer (Q-Trap) 5500 employing Multiple Reaction Monitoring (MRM) mode was utilized to quantitatively analyze peptides in various sources of toad venom, followed by Partial Least Squares Discriminant Analysis (PLS-DA) to further analyze the data and evaluate the effectiveness. This study highlights the importance of exploring macromolecular substance in natural products research and provides a foundation for further studies on toad venom.


Assuntos
Venenos de Anfíbios , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Venenos de Anfíbios/química , Cromatografia Líquida de Alta Pressão/métodos , Peptídeos
9.
Med Oncol ; 40(12): 358, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37966546

RESUMO

Although some studies in China have suggested Huachansu (HCS) combined with chemotherapy is effective in the treatment of various cancers, there are few studies on colorectal cancer (CRC), especially in postoperative adjuvant chemotherapy. The aim of this study was to test the hypothesis that HCS combined with adjuvant chemotherapy would improve survival probability in resected CRC patients. This was a prospective, open-label, randomized phase II study. Patients with stage III or high-risk stage II resected CRC were randomly assigned to the chemotherapy and HCS + chemotherapy groups. The Chemotherapy group was treated with the FOLFOX regimen for ≥ 6 cycles or the CAPEOX regimen for ≥ 4 cycles. The HCS + chemotherapy group was treated with HCS on the basis of the chemotherapy group. The primary endpoint was 3-year disease-free survival (DFS), and the secondary endpoints were 3-year overall survival (OS) and toxicity. A total of 250 patients were included in this study (126 chemotherapy, 124 HCS + chemotherapy). There were significant differences in 3-year DFS between the two groups (median 28.7 vs. 31.6 months, respectively; P = 0.027), but no significant differences in 3-year OS between the two groups (median 32.7 vs. 34 months, respectively; P = 0.146). No patients experienced grade four adverse events, and the rates of leukopenia, neutropenia, and diarrhea in the HCS + chemotherapy group were lower than that those in the chemotherapy group. HCS combined with adjuvant chemotherapy after radical resection for patients with stage III or high-risk stage II CRC was demonstrated to be an effective and feasible treatment.


Assuntos
Venenos de Anfíbios , Neoplasias Colorretais , Humanos , Estudos Prospectivos , Quimioterapia Adjuvante , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/cirurgia
10.
Med Sci Monit ; 29: e940889, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37743616

RESUMO

Cinobufagin (CBF) is a bufadienolide, which is a major active ingredient of toad venom. In recent years, CBF has attracted increasing attention due to its highly potent and multiple pharmacological activities. To better understand the status of research on CBF, we collated recent studies on CBF to provide a valuable reference for clinical researchers and practitioners. According to reports, CBF exhibits extensive pharmacological properties, including antitumor, analgesic, cardioprotection, immunomodulatory, antifibrotic, antiviral, and antiprotozoal effects. Studies on the pharmacological activity of CBF have mainly focused on its anticancer activity. It has been demonstrated that CBF has a therapeutic effect on liver cancer, osteosarcoma, melanoma, colorectal cancer, acute promyelocytic leukemia, nasopharyngeal carcinoma, multiple myeloma, gastric cancer, and breast cancer. However, the direct molecular targets of CBF are currently unknown. In addition, there are few reports on toxicological and pharmacokinetic of CBF. Subsequent studies focusing on these aspects will help promote the development and application of CBF in clinical practice.


Assuntos
Venenos de Anfíbios , Neoplasias Ósseas , Bufanolídeos , Neoplasias Nasofaríngeas , Humanos , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/uso terapêutico , Bufanolídeos/farmacologia , Bufanolídeos/uso terapêutico
11.
Am J Chin Med ; 51(6): 1595-1611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37489112

RESUMO

Cinobufagin, a cardiotonic steroid derived from toad venom extracts, exhibits significant anticancer properties by inhibiting Na[Formula: see text]/K[Formula: see text]-ATPase in cancer cells. It is frequently used in clinical settings to treat advanced-stage cancer patients, improving their quality of life and survival time. However, its long-term use can result in multidrug resistance to other chemotherapy drugs, and the exact mechanism underlying this effect remains unknown. Therefore, this study explores the molecular mechanism underlying the anticancer effects of cinobufagin in hepatocellular carcinomas (HCCs), specifically in HepG2 and Huh-7 cells. As determined using transcriptome analysis, cinobufagin-triggered protective autophagy suppressed cell apoptosis in liver cancer HepG2 and Huh-7 cells by inhibiting the phosphoinositide-3-Kinase (PI3K)-AKT serine/threonine kinase (AKT)-mammalian target of rapamycin (mTOR) pathway. Cinobufagin-inhibited cell proliferation, induced apoptosis, and generated cell autophagy by upregulating the expression of MAP1 light chain 3 protein II, Beclin1, and autophagy-related protein 12-5. In addition, the autophagy inhibitor MRT68921 improved the antiproliferative and proapoptotic effects of cinobufagin in the studied cell lines. Overall, this study suggests that combining cinobufagin with an autophagy inhibitor can effectively treat HCC, providing a potential strategy for cancer therapy.


Assuntos
Venenos de Anfíbios , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Qualidade de Vida , Apoptose/genética , Proliferação de Células , Autofagia/genética , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/uso terapêutico
12.
Drug Dev Res ; 84(5): 815-838, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37154099

RESUMO

Bufadienolides, naturally found in toad venoms having steroid-like structures, reveal antiproliferative effects at low doses. However, their application as anticancer drugs is strongly prevented by their Na+ /K+ -ATPase binding activities. Although several kinds of research were dedicated to moderating their Na+ /K+ -ATPase binding activity, still deeper fundamental knowledge is required to bring these findings into medical practice. In this work, we reviewed data related to anticancer activity of bufadienolides such as bufalin, arenobufagin, bufotalin, gamabufotalin, cinobufotalin, and cinobufagin and their derivatives. Bufotoxins, derivatives of bufadienolides containing polar molecules mainly belonging to argininyl residues, are reviewed as well. The established structures of bufotoxins have been compiled into a one-page figure to review their structures. We also highlighted advances in the structure-modification of the structure of compounds in this class. Drug delivery approaches to target these compounds to tumor cells were discussed in one section. The issues related to extraction, identification, and quantification are separated into another section.


Assuntos
Venenos de Anfíbios , Antineoplásicos , Bufanolídeos , Bufanolídeos/farmacologia , Bufanolídeos/química , Bufanolídeos/metabolismo , Antineoplásicos/farmacologia , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/química , Adenosina Trifosfatases
13.
Molecules ; 28(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37110862

RESUMO

Toad venom is a traditional Chinese medicine with high medicinal value. The existing quality evaluation standards of toad venom have obvious limitations because of the lack of research on proteins. Thus, it is necessary to screen suitable quality markers and establish appropriate quality evaluation methods for toad venom proteins to guarantee their safety and efficacy in clinical applications. SDS-PAGE, HPLC, and cytotoxicity assays were used to analyze differences in protein components of toad venom from different areas. Functional proteins were screened as potential quality markers by proteomic and bioinformatic analyses. The protein components and small molecular components of toad venom were not correlated in content. Additionally, the protein component had strong cytotoxicity. Proteomics analysis showed that 13 antimicrobial proteins, four anti-inflammatory and analgesic proteins, and 20 antitumor proteins were differentially expressed extracellular proteins. A candidate list of functional proteins was coded as potential quality markers. Moreover, Lysozyme C-1, which has antimicrobial activity, and Neuropeptide B (NPB), which has anti-inflammatory and analgesic activity, were identified as potential quality markers for toad venom proteins. Quality markers can be used as the basis of quality studies of toad venom proteins and help to construct and improve safe, scientific, and comprehensive quality evaluation methods.


Assuntos
Venenos de Anfíbios , Bufanolídeos , Animais , Venenos de Anfíbios/química , Proteômica , Bufonidae , Medicina Tradicional Chinesa , Anti-Inflamatórios , Bufanolídeos/farmacologia
14.
Toxicol In Vitro ; 89: 105566, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36738868

RESUMO

A series of bufadienolides were isolated from the Bufo viridis toad venom, and their cytotoxic activities against three human cancer cell lines (HeLa, HT-29, MCF7) and a non-cancer cell line (L-O2) were explored using the MTT assay in vitro. All of nine compounds exhibited cytotoxic activities against the three cancer cell lines, with compound D4 exhibiting potent cytotoxic activity against HeLa cells and was better than positive control. Herein, we further evaluated the effect of compound D4 on HeLa cells. The results revealed that compound D4 has excellent cytotoxic effect on HeLa cells by inhibiting cell colony formation and migration, promoting cell apoptosis, increasing reactive oxygen species (ROS) levels and arresting of HeLa cells in S and G2/M phases. These findings encourage further work on the chemistry and bioactivity of the Bufo viridis toad venom.


Assuntos
Venenos de Anfíbios , Antineoplásicos , Bufanolídeos , Neoplasias , Animais , Humanos , Células HeLa , Linhagem Celular Tumoral , Bufanolídeos/toxicidade , Bufanolídeos/química , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/química , Bufonidae , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular , Apoptose
15.
Toxicon ; 225: 107059, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822515

RESUMO

The cururu toad (Rhinella jimi) is an anuran belonging to the fauna of the Brazilian northeast region, which releases a secretion with toxins from your parotoid glands. Although it has some information about secondary metabolites and proteins, the elemental composition of the released secretion is unknown. Therefore, this is the first report on the ionome of the secretion of the parotoid glands from R. jimi, investigating the influences of abiotic factors such as biome, seasonality, and gender. ICP-MS was used for measurements combined with principal component analysis (PCA). A screening of the secretion sample detected 68 elements which the total concentration of 18 elements was determined. PCA revealed that biome and seasonality factors have a greater influence on the ionomic profile of parotoid secretion. The presence of toxic metals in the secretion samples indicates that the R. jimi toad can be considered a potential bioindicator. These findings may contribute to understanding the metabolism, lifestyle, and interaction of the R. jimi toad with environmental factors as well as open new perspectives to investigate the relationships of the ionome with other biomolecules, for example, metalloproteins and their physiological functions.


Assuntos
Venenos de Anfíbios , Bufonidae , Animais , Venenos de Anfíbios/metabolismo , Brasil , Bufonidae/metabolismo , Glândula Parótida/metabolismo
16.
Recent Pat Anticancer Drug Discov ; 18(3): 408-425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35546757

RESUMO

OBJECTIVE: The objective of this study is to explore the potential anti-liver cancer mechanism of Huachansu injection through integrated bioinformatics analysis. METHODS: Active ingredients of Huachansu injection (extraction of toad skin) were obtained, and their potential drug targets were predicted via SwissTargetPrediction database. Liver cancer disease targets were identified from the GEO (Gene Expression Omnibus) dataset and four public databases. Then Protein-Protein Interaction (PPI) network of toad skin was constructed. GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis were performed subsequently. Finally, molecular docking was performed using Auto Dock Vina. RESULTS: In the search for therapeutic targets, twenty active components of toad skin were screened for further study, five hundred and sixty-eight targets of components were identified. In the search for disease targets, three thousand two hundred and twenty-seven genes were identified after removal of duplicated genes, one hundred and fifty-nine genes were up-regulated in liver cancer samples while two hundred and seventy-eight were down-regulated in liver cancer patients. After predicting the therapeutic targets of the components, the results were cross-checked with the disease targets, thirteen up-regulated targets and ten down-regulated targets were obtained. Finally, in the results of molecular docking, seven targets (CDK1, AKR1B1, MMP12, AURKB, CHEK1, AURKA, TTK) were potential up-regulated targets, three targets (SHBG, SRD5A2, NR1I2) were potential down-regulated targets, all of which have the best binding energy and molecular interactions. CONCLUSION: CDK1, AKR1B1, MMP12, AURKB, CHEK1, AURKA, and TTK could be potential upregulated target proteins of Huachansu injection for treating liver cancer. The mechanism of Huachansu injection in the treatment of liver cancer through these up-regulated targets is related to cell cycle, cellular senescence, viral carcinogenesis, p53 signaling pathway. SHBG, SRD5A2, and NR1I2 could be potential down-regulated target proteins of Huachansu injection in treating liver cancer.


Assuntos
Venenos de Anfíbios , Neoplasias Hepáticas , Humanos , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase , Aldeído Redutase , Aurora Quinase A , Neoplasias Hepáticas/tratamento farmacológico , Metaloproteinase 12 da Matriz , Proteínas de Membrana , Simulação de Acoplamento Molecular , Receptor de Pregnano X , Venenos de Anfíbios/administração & dosagem , Injeções
17.
Molecules ; 27(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431859

RESUMO

Toad venom, a dried product of secretion from Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider, has had the therapeutic effects of hepatocellular carcinoma confirmed. Bufalin and cinobufagin were considered as the two most representative antitumor active components in toad venom. However, the underlying mechanisms of this antitumor effect have not been fully implemented, especially the changes in endogenous small molecules after treatment. Therefore, this study was designed to explore the intrinsic mechanism on hepatocellular carcinoma after the cotreatment of bufalin and cinobufagin based on untargeted tumor metabolomics. Ultraperformance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) was performed to identify the absorbed components of toad venom in rat plasma. In vitro experiments were determined to evaluate the therapeutic effects of bufalin and cinobufagin and screen the optimal ratio between them. An in vivo HepG2 tumor-bearing nude mice model was established, and a series of pharmacodynamic indicators were determined, including the body weight of mice, tumor volume, tumor weight, and histopathological examination of tumor. Further, the entire metabolic alterations in tumor after treating with bufalin and cinobufagin were also profiled by UHPLC-MS/MS. Twenty-seven active components from toad venom were absorbed in rat plasma. We found that the cotreatment of bufalin and cinobufagin exerted significant antitumor effects both in vitro and in vivo, which were reflected in inhibiting proliferation and inducing apoptosis of HepG2 cells and thereby causing cell necrosis. After cotherapy of bufalin and cinobufagin for twenty days, compared with the normal group, fifty-six endogenous metabolites were obviously changed on HepG2 tumor-bearing nude mice. Meanwhile, the abundance of α-linolenic acid and phenethylamine after the bufalin and cinobufagin intervention was significantly upregulated, which involved phenylalanine metabolism and α-linolenic acid metabolism. Furthermore, we noticed that amino acid metabolites were also altered in HepG2 tumor after drug intervention, such as norvaline and Leu-Ala. Taken together, the cotreatment of bufalin and cinobufagin has significant antitumor effects on HepG2 tumor-bearing nude mice. Our work demonstrated that the in-depth mechanism of antitumor activity was mainly through the regulation of phenylalanine metabolism and α-Linolenic acid metabolism.


Assuntos
Venenos de Anfíbios , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Camundongos Nus , Espectrometria de Massas em Tandem , Ácido alfa-Linolênico , Neoplasias Hepáticas/tratamento farmacológico , Venenos de Anfíbios/farmacologia , Venenos de Anfíbios/química , Bufonidae , Fenilalanina
18.
Int J Parasitol Drugs Drug Resist ; 20: 97-107, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36343571

RESUMO

Malaria remains to date one of the most devastating parasitic diseases worldwide. The fight against this disease is rendered more difficult by the emergence and spread of drug-resistant strains. The need for new therapeutic candidates is now greater than ever. In this study, we investigated the antiplasmodial potential of toad venoms. The wide array of bioactive compounds present in Bufonidae venoms has allowed researchers to consider many potential therapeutic applications, especially for cancers and infectious diseases. We focused on small molecules, namely bufadienolides, found in the venom of Rhinella marina (L.). The developed bio-guided fractionation process includes a four solvent-system extraction followed by fractionation using flash chromatography. Sub-fractions were obtained through preparative TLC. All samples were characterized using chromatographic and spectrometric techniques and then underwent testing on in vitro Plasmodium falciparum cultures. Two strains were considered: 3D7 (chloroquine-sensitive) and W2 (chloroquine-resistant). This strategy highlighted a promising activity for one compound named resibufogenin. With IC50 values of (29 ± 8) µg/mL and (23 ± 1) µg/mL for 3D7 and W2 respectively, this makes it an interesting candidate for further investigation. A molecular modelling approach proposed a potential binding mode of resibufogenin to Plasmodium falciparum adenine-triphosphate 4 pump as antimalarial drug target.


Assuntos
Venenos de Anfíbios , Antimaláricos , Malária , Animais , Venenos de Anfíbios/química , Venenos de Anfíbios/uso terapêutico , Antimaláricos/uso terapêutico , Plasmodium falciparum , Malária/tratamento farmacológico , Bufonidae , Extratos Vegetais/química
19.
Int Immunopharmacol ; 113(Pt A): 109312, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36252491

RESUMO

Toad venom is a traditional Chinese medicine that has a long history in treating infectious and inflammatory diseases, such as carbuncle, pharyngitis. As one of the major active components in toad venom, resibufogenin (RBG) possesses a variety of pharmacological activities, including lowering blood pressure, reducing proteinuria and preventing oxidative stress. But only its antitumor activity attracts widespread attention in these years. This study aimed to explore the nonnegligible anti-inflammatory activity of RBG in vivo and in vitro. In endotoxemia mice, a single intraperitoneal administration of RBG significantly lowered serum TNF-α, IL-6 and MCP-1 levels. In LPS-stimulated macrophages, RBG decreased LPS-induced pro-inflammatory mediators' productions (e.g., iNOS, IL-6, TNF-α and MCP-1) through suppressing their transcriptions. Mechanism study showed that RBG hindered IκBα phosphorylation and prevented nuclear translocation of p65, thus inactivating nuclear factor-κB (NF-κB) signaling. Concurrently, RBG also dampened activator protein-1 (AP-1) signaling through inhibiting the phosphorylation levels of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Besides LPS (TLR4 ligand) model, RBG also inhibited Pam3CSK4 (TLR2 ligand)- or poly I:C (TLR3 ligand)-induced inflammatory reactions, suggesting that its target(s) site is(are) not on the cytomembrane. These findings not only support the pharmacological basis for the traditional use of toad venom in inflammatory diseases, but also provide a promising anti-inflammatory candidate.


Assuntos
Venenos de Anfíbios , Bufanolídeos , Animais , Camundongos , Venenos de Anfíbios/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Bufanolídeos/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Ligantes , Lipopolissacarídeos , NF-kappa B/metabolismo , Células RAW 264.7 , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Biomed Pharmacother ; 153: 113492, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076586

RESUMO

Bufotenines, a natural component from toad venom, showed great potential for development as a novel anti-inflammation and analgesia agent, but the potential toxicity limited its clinic use. In this paper, bufotenines-loaded liposome was prepared and optimized. Then, the therapeutic effects and drug safety of bufotenines-liposome were investigated against inflammation and pain on animal models, with a focus on gastrointestinal toxicity. Bufotenines and its liposome significantly increased paw withdrawal mechanical threshold (PWMT) in Von Frey test and hot paw withdrawal latency (HPWL) in hot-plate test. Moreover, intestinal absorption in vitro and pathological analysis in vivo showed that total bufotenines-loaded liposome significantly reduced the gastrointestinal irritation through reducing exposure of total bufotenines on intestinal tissue. High-sensitivity lipidomics analysis revealed the effect of total bufotenines-loaded liposome were be related to the down-regulation of inflammatory mediators from cyclooxygenase (COX) and lipoxygenase (LOX), the up-regulation of cytochrome P450 (CYP450), and other pathways, thus regulating lipid metabolism pathway and ultimately reducing gastrointestinal irritation. This study shows that liposome-loaded bufotenines has anti-inflammatory, analgesic effects and achieves toxicity reduction. These results provide systematic evidences for efficacy and safety of toad venom active ingredients.


Assuntos
Venenos de Anfíbios , Lipossomos , Analgésicos/toxicidade , Animais , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios não Esteroides , Bufotenina , Ciclo-Oxigenase 2/metabolismo , Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...